COMMON ENTRANCE EXAMINATION AT 13+

MATHEMATICS

LEVEL 3: NON-CALCULATOR PAPER

Monday 26 January 2015

Please read this information before the examination starts.

- This examination is 60 minutes long.
- All questions should be attempted.
- A row of dots denotes a space for your answer.
- You must show all your working or you may receive no marks.
- Answers given as fractions should be reduced to their lowest terms.
1. (a) Ann has £59.25 and Beth has £49.89

How much money do Ann and Beth have in total?

Answer: £ (2)

(b) Colin has £20.02 and then he buys a bag which costs £8.73

How much money does Colin have left?

Answer: £ (2)

(c) A box of pens costs £3.35

How much would it cost to buy 9 of these boxes of pens?

Answer: £ (2)

(d) 9 identical boxes of pencils cost £31.05 altogether.

How much does 1 box of these pencils cost?

Answer: £ (2)
2. Dan is 12 years old and Emma is 21 years old.

 (i) Write down the ratio of Dan’s age to Emma’s age in its simplest form.

 Answer::........... (1)

Mother shares £132 between Dan and Emma in the ratio of their ages.

 (ii) How much does Dan receive?

 Answer: £ (2)

3. Work out the value of

 (a) (i) $-4 + 8 \times -5$

 Answer: (2)

 (ii) $5 \times \sqrt{121} + 7$

 Answer: (2)

 (b) (i) Which number should be written in the box to complete the following calculation?

 \[72 \div (9 \times \Box) = 8^2 \div 4^2 \]

 Answer: (2)

 (ii) Which mathematical operation (+, −, ×, ÷) should be written in the box to complete the following calculation?

 \[12 - 8 \Box 2 = 2 \]

 Answer: (1)
4. (a) Jack scored 36 marks out of 80 in a test.
 What is 36 out of 80 as a percentage?

 Answer:% (2)

(b) Jessica’s first throw of a javelin is 33 metres.
 Her second throw is 11% longer.
 How long is Jessica’s second throw?

 Answer: m (2)

(c) Write the following numbers in order of size, starting with the smallest.

 \[
 \frac{5}{9} \quad 55\% \quad 0.505
 \]

 Answer:, , (2)
5. (i) Write the number 32 as a product of its prime factors, using indices.

Answer: .. (2)

(ii) Write 320 as a product of its prime factors, using indices.

Answer: .. (1)

6. You are told that \(654 \times 32.5 = 21255\)
Use this fact to work out

(i) \(654 \times 3.25\)

Answer: .. (1)

(ii) \(655 \times 32.5\)

Answer: .. (1)

(iii) \(2125.5 \div 325\)

Answer: .. (1)
7. By first writing each number in the following calculation correct to 1 significant figure, estimate the value of

\[
\frac{305 \times 6.123}{0.499}
\]

Answer: (3)

8. Paul is building a bookcase.
 All the shelves are \(\frac{7}{8}\) of a metre long.
 Paul has a piece of wood which is \(2\frac{3}{20}\) metres long.
 He cuts two shelves from this piece of wood.
 (i) What is the length, in centimetres, of the piece of wood that remains?

Answer: cm (3)

Paul buys a piece of wood which is \(4\frac{1}{2}\) metres long.
(ii) How many shelves can he cut from this piece?

Answer: (2)
9. (i) At 9 am the temperature in Alaska is $-12.7^\circ C$ and in Washington it is $-2.9^\circ C$.

(a) What is the difference between these two temperatures?

Answer: $..........................^\circ C$ (1)

By noon, the temperature in Washington has risen by $4.5^\circ C$.

(b) What is the temperature in Washington at noon?

Answer: $..........................^\circ C$ (1)

(ii) There are two different temperature scales: Celsius ($^\circ C$) and Fahrenheit ($^\circ F$).

To convert Celsius to Fahrenheit, this formula can be used:

$$F = \frac{9}{5}C + 32$$

Where F is the temperature in $^\circ F$ and C is the temperature in $^\circ C$.

(a) If the temperature is $-10^\circ C$, what is the temperature in Fahrenheit?

Answer: $..........................^\circ F$ (2)

(b) If the temperature is $50^\circ F$, what is the temperature in Celsius?

Answer: $..........................^\circ C$ (2)
10. If \(x = 2 \), \(y = -2 \), and \(z = -6 \) find the value of

(i) \(7x - 4y \)

Answer:

(ii) \(2xyz \)

Answer:

(iii) \(z - y^3 \)

Answer:

(iv) \(\frac{2z^2}{3y} \)

Answer:
11. (i) Work out the size of each of the angles marked a, b, c and d in the diagram below.

Answer: $a =$.. (1)

$b =$.. (2)

$c =$.. (1)

$d =$.. (1)

(ii) Is shape $ABCD$ a parallelogram?
Give a reason for your answer.

Answer: Yes/No reason: (2)
12. The currency in the Czech Republic is the koruna (CZK).

£1 is worth 28 CZK.

(i) Draw a straight line on the grid below to convert CZK to £.

(ii) **Showing clearly where you take your readings**, use your graph to help you answer the following questions:

(a) How many CZK are worth £17.50?

Answer: CZK (2)

(b) How many pounds are worth 420 CZK?

Answer: £ (2)

(c) Tomas has 350 CZK.

James has £14

Who has more money and by how many pounds?

Answer: by £ (2)
13.
(i) Explain why the triangle PQR with sides of length 5 cm, 12 cm and 13 cm contains a right angle.

Answer: ...

... (2)

(ii) Using ruler and compasses, construct this triangle and label it PQR.
(One side, QR, has already been drawn for you.)

(iii) Calculate the area of triangle PQR.

Answer: cm2 (1)

Look at the trapezium $ABCD$.

(iv) (a) What is the area of $ABCD$?

Answer: cm2 (2)

(b) What is the perimeter of $ABCD$?

Answer: cm (1)
14. (i) A straight line has the equation $y = 1 - 2x$

(a) Complete the table of values below for the line $y = 1 - 2x$

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td>-3</td>
</tr>
</tbody>
</table>

(b) Draw and label the line $y = 1 - 2x$ on the grid opposite.

(ii) A curve has the equation $y = 2x^2 - 2$

(a) Complete the table of values below for the curve $y = 2x^2 - 2$

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

(b) Draw and label the curve $y = 2x^2 - 2$ on the grid opposite.

(iii) Use your graph to find the positive x-value which satisfies the equation

$1 - 2x = 2x^2 - 2$

Answer: $x = \ldots$
15. (a) The patterns below are made up of grey and white squares.

![Patterns 1, 2, and 3]

(i) Draw pattern 4 in the grid below.

![Grid]

(ii) Complete the table below to show the number of grey and white squares in each pattern.

<table>
<thead>
<tr>
<th>pattern</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>grey squares</td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white squares</td>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(iii) In which pattern are there 20 grey squares?

Answer: ...

(iv) In which pattern is the number of grey squares 15 more than the number of white squares?

Answer: ...
(b) A sequence of numbers is generated using the following formula for the nth term:

$$(n + 1)^2 + 3$$

The first term of this sequence is 7

(i) Write down the next three terms of the sequence.

Answer:,, \hspace{1cm} (2)

(ii) Explain why the number 68 is not a number in this sequence.

Answer: ...

... \hspace{1cm} (1)

(iii) Which term in the sequence is 147?

Answer: term \hspace{1cm} (1)

TURN OVER FOR QUESTION 16
16. (a) Chris is building a patio using the rectangular paving blocks shown below.

(i) In terms of x, what is the perimeter of the block?
 Simplify your answer.

 Answer: cm (2)

(ii) Find the value of x if the perimeter of the block is 1.2 metres.

 Answer: $x =$ (2)

(b) Matt is building a rectangular swimming pool and has drawn the plan of it below.

(i) (a) By considering the height of this rectangle, write down an equation in terms of y and z

 Answer: (1)

(b) By considering the width of this rectangle, write down an equation in terms of y and z

 Answer: (1)

(ii) Using your answers to part (b) (i), solve simultaneous equations to find the value of y and the value of z

 Answer: $y =$ $z =$ (3)

(Total marks: 100)